
1

Much like we assign addresses to
buildings in the physical world,
computers must keep track of the

location for every piece of data they store.
Similarly to physical constructions, smaller
building blocks, called bits, are combined to
create higher-level structures such as files
or web pages. Unlike buildings, though, bits
can be easily moved or copied. This means
computers must use different addressing
schemes for different use cases and ideally
navigate frictionlessly between them.

At the lowest level, each bit has its own
address in a computer’s memory. The
values of all variables in use are stored
temporarily in physical parts of the device’s
hardware and applications access them
based on these physical addresses. Only
the hardware itself can process this form
of addressing. Rarely, it gets exposed
to programmers struggling to fix bugs.
Most computer addresses are not legible
to humans and only serve the machine’s
internal logic. Still, certain addresses need
to be accessible to people and that’s why
computer addresses are often abstracted
to human-readable formats.

Human-readable computer addresses
usually correspond to higher levels of
abstractions, such as files or web pages.
Each file stored on a disk has its own
address, which we commonly refer to as
a path. The physical location on the disk
is abstracted to a readable path in a form
such as /user/folder/doc.txt. In a file path,
slashes denote different directories, or
grouping of files, starting from the root of
the file system up until the name of the

file. This organization creates a tree-like
hierarchy and allows users to organize files
in directories. Files are accessed based on
routes through directories. To analogize
to the physical world again, this is akin to
giving turn-by-turn directions to someone
to get them to a specific location, rather
than giving them an address itself.

An equivalent form of address is used
when browsing data on other computers.
On the internet, users mostly access files
using the standardized format of their
paths, known as uniform resource locators:
URLs. In a form easily understandable
by humans, a URL is a web address that
directs us to specific content. Its basic form
defines a communication protocol, domain,
and path to the requested file.

The URL pictured above is easily under-
standable because it points to a domain,
which is a human readable alias for
machine level addresses. When accessing
a web page using a domain-name-based
URL, the human-readable address gets
translated into its numerical counterpart,
known as the internet protocol (IP)
address. This number enables the com-
puter to identify the location in the net-
work and route data there. An IP address is
assigned to every device connected to any
kind of network and can be shared across
multiple users, domains, or services. For
example, one server with one IP address
can host multiple websites with different
domains. By analogy to the physical world,
an IP address is like an apartment building
with different tenants sharing a single
street address.

Protocol Foundations 002: Addressing
Mario Havel and Tim Beiko

2

Navigating through subdirectories can be
practical when things are organized accord-
ing to a clear hierarchy. But, as more and
more locations come into existence and
the number of branches to search through
increases, this may not be efficient.

This system also allows different directo-
ries to hold identical files which is unneces-
sary for purposes like archiving. Using path
location also becomes problematic when
handling data whose location may change
over time.

Luckily, another addressing scheme exists
to address these drawbacks. Content
addressing is a scheme which gives each
file a unique address derived from its
contents, rather than its location. This is
especially useful for files that might be
duplicated in multiple locations, some of
which may become unavailable over time,
but whose contents are stable. Specifically,
content-addressable storage systems,

such as InterPlanetary File System (IPFS),
retrieve files using an identifier. Identifiers
are derived from the file’s content using
cryptographic hash functions. These take
the file’s data as an input and output a
unique fingerprint. The same files will
always result in the same fingerprint and
therefore the same content identifier. Even
the slightest change in the file’s content
will result in a completely new identifier
and address.

Because the identifier is derived from the
content, when changing even a single char-
acter in a file, its IPFS address also changes
independently from its file name.

Content addressing is therefore ideal for
files with fixed data, but variable locations.
The uniqueness of identifiers allows for
retrieving the desired file under the same
address even if the file moves across
different storage devices. In some cases,
it’s even possible to reconstruct a single

https://ipfs.io/ipfs/Qmd63gzHfXCsJepsdTLd4cqigFa7SuCAeH6smsVoHovdbE
https://ipfs.io/ipfs/QmPMaiZcLFRZ4Ua7vgTFJH3U8xzXJL7abmJwhjgmgjESs8

https://ipfs.io/ipfs/Qmd63gzHfXCsJepsdTLd4cqigFa7SuCAeH6smsVoHovdbE
https://ipfs.io/ipfs/QmPMaiZcLFRZ4Ua7vgTFJH3U8xzXJL7abmJwhjgmgjESs8

3

file from multiple sources, as the identifier
guarantees the various bits received can be
assembled into a single, coherent, output.

This feature makes content addressing
the preferred basis for various modern
decentralized protocols. One of the oldest
examples is BitTorrent, which enabled
peer-to-peer file sharing. Instead of data
being hosted on a single server, torrents
retrieve small chunks of a file shared by
various peers in the network and recon-
struct it locally.

A more modern example is IPFS, a decen-
tralized storage network that enables cloud
storage across a peer-to-peer network of
hosts, not a single entity managing servers.
Users of IPFS can seamlessly access files
using static unique address, while the file
can be communally hosted anywhere in the
network, with varying levels of redundancy.
Uploading the same file to the network
then results in it having the same content
identifier and adds redundancy to the
protocol rather than wasted duplication.

While this is a valuable property, content
addressing does come at the cost of
losing human readability. In some cases,
search engines have emerged to enable
content discovery, such as ThePirateBay
for torrents. In others, mapping schemes
similar to the one between domains and
IP addresses are more useful.

For example, blockchain addresses, which
are derived from a specific private key,
can be thought of as content addressing
for that key. They are literally called block-
chain addresses! In Ethereum’s case, they
are 20 byte hexadecimal values, prefixed
by 0x.1 The Ethereum Name Service
(ENS) allows users to register human
readable names to point to an address
(e.g., summerofprotocols.eth points to
the aforementioned address), providing
a human-readable alternative to the raw
address.

————

1. For example, 0x00000000219ab540356cbb839cbe05303d7705fa

To summarize, addressing is at the heart
of how computers store, access, and
exchange data. Addressing schemes used
by computers aren’t easily understandable
to humans, and therefore higher-level
addressing schemes are exposed to users,
which the computer translates back to its
internal logic.

Path- or URL-based addressing emphasizes
the location of a piece of content, which
results in a tree-like organizational struc-
ture. This is optimal for cases where the
actual content in a specific location may
change over time, but does not provide a
way to access content without knowing its
exact path.

Content addressing creates a unique
identifier for a piece of data, allowing for
its easy retrieval regardless of location.
The downside there is that any change in
the data results in a different identifier.
Identifiers, because they are generated by
hash functions, aren’t as easy for humans
to remember as file paths or domains.

M A R I O H AV E L & T I M B E I KO are part
of the Ethereum Foundation’s Protocol Support
team which helps facilitate Ethereum network
upgrades as well as other protocol-related
initiatives, including Summer of Protocols.
M A R I O | github.com/taxmeifyoucan
T I M | warpcast.com/tim

https://github.com/taxmeifyoucan
https://warpcast.com/tim

summerofprotocols.com
hello@summerofprotocols.com

© 2023 Ethereum Foundation. All contributions are the property
of their respective authors and are used by Ethereum Foundation
under license. All contributions are licensed by their respective
authors under CC BY-NC 4.0. After 2026-12-13, all contributions
will be licensed by their respective authors under CC BY 4.0.
Learn more at: summerofprotocols.com/ccplus-license-2023

ISBN-13: 978-1-962872-53-9
Printed in the United States of America
Printing history: February 2024
1 3 5 7 9 10 8 6 4 2

RETROSPECTUS

NEWSLETTER

http://summerofprotocols.com
mailto:hello@summerofprotocols.com
https://summerofprotocols.com/ccplus-license-2023

