
1

Zero-knowledge, often abbreviated as ZK,
is a domain of cryptography, similar to
encryption which we covered in the first

Protocol Foundations issue in this series.1

ZK employs cryptographic principles in a dif-
ferent way: instead of obfuscating data cryp-
tographically, ZK protocols allow us to prove
knowledge of data without fully revealing it. If
we analogize traditional encryption to a light
switch that can be either on or off, hiding or
revealing everything, zero-knowledge proofs
are more like a dimmer, controlling the amount
of information that is visible.

In other words, zero-knowledge proofs enable
us to probabilistically prove a statement or the
possession of information without revealing
the information itself. Proving the validity of
a statement about the data without revealing
the actual data might seem counterintuitive
or almost impossible—that’s why these sys-
tems are so revolutionary. This breakthrough
property opens up a new paradigm of private
and scalable applications over large amounts
of data. Let’s examine a simple example to
illustrate what this means:

Bob is a color-blind person. His friend Alice
has two balls, one red and one green. To col-
or-blind Bob both balls appear the same. He
does not believe Alice can reliably distinguish
between them. Alice can prove that she can
tell them apart without Bob knowing what
color the balls are. To do this, Bob holds one
ball in each hand in front of Alice, who sees
which hand holds which ball. Bob then puts
the balls behind his back and either switches
them or keeps them in the same hand. He
then shows them to Alice again, asking wheth-
er they changed hands. Assuming Alice is not
also color-blind, she’ll reliably tell Bob whether
or not he switched the balls in his hands while
they were behind his back.

The first time Bob does this, Alice has a 50%
chance of getting lucky. Bob can then repeat

1.	Mario Havel and Tim Beiko, “Protocol Foundations 001: Cryptography,” Summer of Protocols, 2023.
summerofprotocols.com/wp-content/uploads/2023/12/53-BEIKO-001-2023-12-13.pdf

the sequence, over and over. Each time Al-
ice guesses correctly, the probability she has
simply gotten lucky on each chance
is halved. If they repeat this 100
times and Alice guesses correctly
each time, the odds she would have
gotten the right answer each time
by luck are 1 out of 2^100—a larger
number than the number of atoms in
the universe.

We call this a zero-knowledge proof
because Bob never learns which ball
is green or red and at no time can
he distinguish them himself, even
though he learns with high confidence that
Alice can distinguish them.

Provers and verifiers. In a proof mechanism
like Alice and Bob and the two colored balls,
participants have two distinct roles: prover and
verifier. The verifier (Bob) challenges the prover
(Alice) after changing the order of balls; the
prover creates the proof by sharing the result
of their observation. With each iteration of
this process, the probability that the correct
answer is a coincidence rapidly asymptotes to
zero.

Arguments. The obvious limitation of this
approach is the interactivity of the protocol,
requiring many rounds of communication
between the prover and verifier. The constant
back and forth is impractical even with today’s
fast computation because it limits how the
protocol can operate. In practice, proofs in-
volve complex logical statements broken down
into smaller components, similarly to how
high-level coding languages get broken down
to sequences of 0s and 1s by computers. In
ZK systems, the statement that is evaluated is
called an assertion. The result obtained by this
evaluation is called an argument, also often
referred to as a proof.

Scalability. ZK proof systems have been an ac-
tive area of research since the 1980s. Recent

Protocol Foundations 005: Zero-knowledge proofs
Mario Havel and Tim Beiko

https://summerofprotocols.com/wp-content/uploads/2023/12/53-BEIKO-001-2023-12-13.pdf

2

cryptographic protocols have been able to
improve proving efficiency, making ZK a viable
solution for some real-world applications. In
parallel to ZK research, systems like the sum-
check protocol2 were invented to generate
and verify proofs more easily by calculating a
single point on a polynomial. Even before the
ZK application, the sum-check protocol was
a remarkable achievement that opened new
possibilities. A widely quoted sentence from
an important 1993 paper gets to the heart of
the importance of scalability:

In this setup, a single reliable PC can monitor
the operation of a herd of supercomputers
working with possibly extremely powerful but
unreliable software and untested hardware.3

The protocol reduces checking the entire sum
to checking only a single, randomly-chosen
point. Using a single point allows the actual
ZK proof to be very small, making it possible
to verify correctness without heavy computa-
tion. These newer, smaller, proofs are called
succinct or scalable. Scalability in this context
means that we are able to generate a relatively
small proof from large amounts of data and
verification of this proof scales sublinearly.

Reference strings. Another important inno-
vation in ZK proofs was the introduction of
reference strings shared between the prover

2.	Presented originally in Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan, “Algebraic
methods for interactive proof systems,” Journal of the ACM 39, no. 4 (October 1992): 859–868 (doi.
org/10.1145/146585.146605). See also some interesting retrospection from one of the authors in his blog
with enlightening comments from Eli Ben-Sasson: blog.computationalcomplexity.org/2024/02/sumchecks-and-
snarks.html.

3.	Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan, “Algebraic methods for interactive proof systems,
Journal of the ACM 39, no. 4 (October 1992): 859–868. doi.org/10.1145/103418.103428

4.	KZG Summoning Ceremony, 2022. ceremony.ethereum.org

and verifier. By sharing a secret value between
the prover and verifier, we can eliminate the
need for interactive verification. Of course,
this comes at the cost of an additional trust
assumption: that the shared secret actually is
secret!

Trusted setups. This trade-off simplifies the
proving but creates overhead for operating
such a system. Leaking the reference string
value outside of verifying parties would result
in an insecure proof system where anyone
could generate fake proofs. If the initial setup
has been done securely, for example by using
multi-party computation (MPC), the system
can be considered safe. This is known as
trusted setup. Trusted setups usually have an
“n=1” trust assumption, meaning that as long
as a single participant in the MPC keeps their
input to the secret generation protocol hid-
den, the secret cannot reconstucted. In other
words, every input to the secret is necessary
to calculate the computation and a single par-
ticipant honestly destroying their input to the
process is sufficient to guarantee the security
of the entire system. With processes to create
a secure trusted setup, the trade-off is man-
ageable and these types of systems has been
in wide public use for almost a decade. Nota-
bly, the Ethereum community recently used a
trusted setup with over 141,000 participants.4

SNARKs. Succinctness and trusted steps form
the basis for the most commonly used ZK

https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://blog.computationalcomplexity.org/2024/02/sumchecks-and-snarks.html
https://blog.computationalcomplexity.org/2024/02/sumchecks-and-snarks.html
https://doi.org/10.1145/103418.103428
https://ceremony.ethereum.org/

3

proof systems: succinct non-interactive argu-
ments of knowledge or SNARKs.

STARKs. A further iteration of ZK systems
are succinct transparent arguments of knowl-
edge—STARKs—which improve over SNARKs
by being transparent. Unlike SNARKs, STARKs
do not need to use a secret reference value in
the system to generate a proof. Without the
need for a trusted setup, STARK systems are
easier to create and have been popular in open
public systems. The trade-off here is transpar-
ency requires a larger proof size and slower
computation, making STARKs impractical for
several use cases.

The scalable or succinct and non-interactive
properties of these schemes are what makes
them so useful. They allow users to prove in-
formation privately and quickly and for others
to efficiently verify these proofs. Discussing
the theory of zero-knowledge can be abstract
but the implications of these protocols are
significant.

Here are a few example applications. The most
obvious benefit of ZK proofs is better privacy
for users. For example, many services with age
or location restrictions may require submitting
a government ID that leaks all information
contained in it. With zero-knowledge, instead
of providing their full ID, users can generate
a proof of their age, ID issuance location, or
both, without providing any additional infor-
mation. To enable this, the data in IDs needs
to be formalized in a ZK protocol. ZK protocols
like STARKs or SNARKs are general systems
which include specific tools called circuits. A
ZK circuit is the encoding of a computer pro-
gram into constraints, for example, verifying
that an ID is issued by a valid issuer and that
its country matches a specific list or that it has
not yet expired.

A single ZK circuit may be associated with
multiple possible proof generation procedures.
It also defines how verification works. Anyone
with the verification software can then verify
proofs for themselves, without requiring the
original input data, in this case the ID.

Taking this even further, ID with ZK support
can even be used for a voting system. Digi-
tized voting has been a challenge because of
privacy and trust assumptions which are more

easily solved with paper balloting where it’s
easier to avoid a single point of failure. Since
ZK proofs are designed to keep information
private while proving it in public, they are ideal
for democratic voting. Voters can cast a veri-
fiable vote without revealing who they are or
what party they voted for, and the integrity of
the vote can be independently audited.

This audit is possible by creating a public and
open-source proof system with circuits for
proving validity of each voter and their vote.
Transparency is necessary here because a
closed system would be easier to manipulate.
The system needs to include multiple circuits
for proving authenticity of voters, whether
they are registered and what vote they cast.
First, the authentication is done by proving
that a unique voter ID is in the database of
voters without revealing which ID it is. Based
on this, voters can vote and generate a proof
about vote validity to ensure that it corre-
sponds to valid choices (e.g., specific candi-
dates) without revealing individual vote details.

The result of the election in this case is a
system-wide proof that can show that all
votes were legitimate and counted correctly.
Without disclosing any individual votes, the
ZK proof is publicly verifiable and practically
impossible to forge if the underlying system is
transparent.

While zero-knowledge systems are slowly be-
ing adopted, applications are still under active
development and not yet sufficiently robust
to be used as full-scale replacements for more
battle-tested cryptographic protocols. Still,
they open up exciting future possibilities. In
cases where relying on cutting-edge tech-
nology is appropriate, as in blockchain-based
applications which already have dependencies
on these protocols, ZK proofs can allow novel
coordination mechanisms to emerge. Over
time, some of these will hopefully prove viable
for mainstream usage!

M A R I O H AV E L & T I M B E I KO are part of
the Ethereum Foundation’s Protocol Support team
which helps facilitate Ethereum network upgrades
as well as other protocol-related initiatives,
including Summer of Protocols.
M A R I O | github.com/taxmeifyoucan
T I M | warpcast.com/tim

https://github.com/taxmeifyoucan
https://warpcast.com/tim

summerofprotocols.com
hello@summerofprotocols.com

© 2023 Ethereum Foundation. All contributions are the property
of their respective authors and are used by Ethereum Foundation
under license. All contributions are licensed by their respective
authors under CC BY-NC 4.0. After 2026-12-13, all contributions
will be licensed by their respective authors under CC BY 4.0.
Learn more at: summerofprotocols.com/ccplus-license-2023

ISBN-13: 978-1-962872-53-9
Printed in the United States of America
Printing history: July 2024

1 3 5 7 9 10 8 6 4 2

RETROSPECTUS

NEWSLETTER

http://summerofprotocols.com
mailto:hello@summerofprotocols.com
https://summerofprotocols.com/ccplus-license-2023

