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Zero-knowledge, often abbreviated as ZK, 
is a domain of cryptography, similar to 
encryption which we covered in the first 

Protocol Foundations issue in this series.1

ZK employs cryptographic principles in a dif-
ferent way: instead of obfuscating data cryp-
tographically, ZK protocols allow us to prove 
knowledge of data without fully revealing it. If 
we analogize traditional encryption to a light 
switch that can be either on or off, hiding or 
revealing everything, zero-knowledge proofs 
are more like a dimmer, controlling the amount 
of information that is visible.

In other words, zero-knowledge proofs enable 
us to probabilistically prove a statement or the 
possession of information without revealing 
the information itself. Proving the validity of 
a statement about the data without revealing 
the actual data might seem counterintuitive 
or almost impossible—that’s why these sys-
tems are so revolutionary. This breakthrough 
property opens up a new paradigm of private 
and scalable applications over large amounts 
of data. Let’s examine a simple example to 
illustrate what this means:

Bob is a color-blind person. His friend Alice 
has two balls, one red and one green. To col-
or-blind Bob both balls appear the same. He 
does not believe Alice can reliably distinguish 
between them. Alice can prove that she can 
tell them apart without Bob knowing what 
color the balls are. To do this, Bob holds one 
ball in each hand in front of Alice, who sees 
which hand holds which ball. Bob then puts 
the balls behind his back and either switches 
them or keeps them in the same hand. He 
then shows them to Alice again, asking wheth-
er they changed hands. Assuming Alice is not 
also color-blind, she’ll reliably tell Bob whether 
or not he switched the balls in his hands while 
they were behind his back.

The first time Bob does this, Alice has a 50% 
chance of getting lucky. Bob can then repeat 
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the sequence, over and over. Each time Al-
ice guesses correctly, the probability she has 
simply gotten lucky on each chance 
is halved. If they repeat this 100 
times and Alice guesses correctly 
each time, the odds she would have 
gotten the right answer each time 
by luck are 1 out of 2^100—a larger 
number than the number of atoms in 
the universe.

We call this a zero-knowledge proof 
because Bob never learns which ball 
is green or red and at no time can 
he distinguish them himself, even 
though he learns with high confidence that 
Alice can distinguish them.

Provers and verifiers. In a proof mechanism 
like Alice and Bob and the two colored balls, 
participants have two distinct roles: prover and 
verifier. The verifier (Bob) challenges the prover 
(Alice) after changing the order of balls; the 
prover creates the proof by sharing the result 
of their observation. With each iteration of 
this process, the probability that the correct 
answer is a coincidence rapidly asymptotes to 
zero. 

Arguments. The obvious limitation of this 
approach is the interactivity of the protocol, 
requiring many rounds of communication 
between the prover and verifier. The constant 
back and forth is impractical even with today’s 
fast computation because it limits how the 
protocol can operate. In practice, proofs in-
volve complex logical statements broken down 
into smaller components, similarly to how 
high-level coding languages get broken down 
to sequences of 0s and 1s by computers. In 
ZK systems, the statement that is evaluated is 
called an assertion. The result obtained by this 
evaluation is called an argument, also often 
referred to as a proof.

Scalability. ZK proof systems have been an ac-
tive area of research since the 1980s. Recent 
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cryptographic protocols have been able to 
improve proving efficiency, making ZK a viable 
solution for some real-world applications. In 
parallel to ZK research, systems like the sum-
check protocol2 were invented to generate 
and verify proofs more easily by calculating a 
single point on a polynomial. Even before the 
ZK application, the sum-check protocol was 
a remarkable achievement that opened new 
possibilities. A widely quoted sentence from 
an important 1993 paper gets to the heart of 
the importance of scalability:

In this setup, a single reliable PC can monitor 
the operation of a herd of supercomputers 
working with possibly extremely powerful but 
unreliable software and untested hardware.3

The protocol reduces checking the entire sum 
to checking only a single, randomly-chosen 
point. Using a single point allows the actual 
ZK proof to be very small, making it possible 
to verify correctness without heavy computa-
tion. These newer, smaller, proofs are called 
succinct or scalable. Scalability in this context 
means that we are able to generate a relatively 
small proof from large amounts of data and 
verification of this proof scales sublinearly. 

Reference strings. Another important inno-
vation in ZK proofs was the introduction of 
reference strings shared between the prover 
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and verifier. By sharing a secret value between 
the prover and verifier, we can eliminate the 
need for interactive verification. Of course, 
this comes at the cost of an additional trust 
assumption: that the shared secret actually is 
secret! 

Trusted setups. This trade-off simplifies the 
proving but creates overhead for operating 
such a system. Leaking the reference string 
value outside of verifying parties would result 
in an insecure proof system where anyone 
could generate fake proofs. If the initial setup 
has been done securely, for example by using 
multi-party computation (MPC), the system 
can be considered safe. This is known as 
trusted setup. Trusted setups usually have an 
“n=1” trust assumption, meaning that as long 
as a single participant in the MPC keeps their 
input to the secret generation protocol hid-
den, the secret cannot reconstucted. In other 
words, every input to the secret is necessary 
to calculate the computation and a single par-
ticipant honestly destroying their input to the 
process is sufficient to guarantee the security 
of the entire system. With processes to create 
a secure trusted setup, the trade-off is man-
ageable and these types of systems has been 
in wide public use for almost a decade. Nota-
bly, the Ethereum community recently used a 
trusted setup with over 141,000 participants.4

SNARKs. Succinctness and trusted steps form 
the basis for the most commonly used ZK 
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proof systems: succinct non-interactive argu-
ments of knowledge or SNARKs.

STARKs. A further iteration of ZK systems 
are succinct transparent arguments of knowl-
edge—STARKs—which improve over SNARKs 
by being transparent. Unlike SNARKs, STARKs 
do not need to use a secret reference value in 
the system to generate a proof. Without the 
need for a trusted setup, STARK systems are 
easier to create and have been popular in open 
public systems. The trade-off here is transpar-
ency requires a larger proof size and slower 
computation, making STARKs impractical for 
several use cases.

The scalable or succinct and non-interactive 
properties of these schemes are what makes 
them so useful. They allow users to prove in-
formation privately and quickly and for others 
to efficiently verify these proofs. Discussing 
the theory of zero-knowledge can be abstract 
but the implications of these protocols are 
significant. 

Here are a few example applications. The most 
obvious benefit of ZK proofs is better privacy 
for users. For example, many services with age 
or location restrictions may require submitting 
a government ID that leaks all information 
contained in it. With zero-knowledge, instead 
of providing their full ID, users can generate 
a proof of their age, ID issuance location, or 
both, without providing any additional infor-
mation. To enable this, the data in IDs needs 
to be formalized in a ZK protocol. ZK protocols 
like STARKs or SNARKs are general systems 
which include specific tools called circuits. A 
ZK circuit is the encoding of a computer pro-
gram into constraints, for example, verifying 
that an ID is issued by a valid issuer and that 
its country matches a specific list or that it has 
not yet expired. 

A single ZK circuit may be associated with 
multiple possible proof generation procedures. 
It also defines how verification works. Anyone 
with the verification software can then verify 
proofs for themselves, without requiring the 
original input data, in this case the ID.

Taking this even further, ID with ZK support 
can even be used for a voting system. Digi-
tized voting has been a challenge because of 
privacy and trust assumptions which are more 

easily solved with paper balloting where it’s 
easier to avoid a single point of failure. Since 
ZK proofs are designed to keep information 
private while proving it in public, they are ideal 
for democratic voting. Voters can cast a veri-
fiable vote without revealing who they are or 
what party they voted for, and the integrity of 
the vote can be independently audited.

This audit is possible by creating a public and 
open-source proof system with circuits for 
proving validity of each voter and their vote. 
Transparency is necessary here because a 
closed system would be easier to manipulate. 
The system needs to include multiple circuits 
for proving authenticity of voters, whether 
they are registered and what vote they cast. 
First, the authentication is done by proving 
that a unique voter ID is in the database of 
voters without revealing which ID it is. Based 
on this, voters can vote and generate a proof 
about vote validity to ensure that it corre-
sponds to valid choices (e.g., specific candi-
dates) without revealing individual vote details. 

The result of the election in this case is a 
system-wide proof that can show that all 
votes were legitimate and counted correctly. 
Without disclosing any individual votes, the 
ZK proof is publicly verifiable and practically 
impossible to forge if the underlying system is 
transparent.

While zero-knowledge systems are slowly be-
ing adopted, applications are still under active 
development and not yet sufficiently robust 
to be used as full-scale replacements for more 
battle-tested cryptographic protocols. Still, 
they open up exciting future possibilities. In 
cases where relying on cutting-edge tech-
nology is appropriate, as in blockchain-based 
applications which already have dependencies 
on these protocols, ZK proofs can allow novel 
coordination mechanisms to emerge. Over 
time, some of these will hopefully prove viable 
for mainstream usage!
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